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Abstract

I demonstrate using state-of-the-art generative artificial intelligence models called
diffusion models to simulate credible economic network data. I also show how the
method generalizes to non-network economic data. In the method, (i) treatment
assignment can be controlled, (ii) true treatment effects are known, and (iii) there is
limited room for researcher discretion in shaping the simulated data output. I apply
the proposed methodology to a dataset of student social networks in US middle
schools. Leveraging the correspondingly simulated data, I compare the performance
of popular estimators accounting for spillovers and provide recommendations for
their use.

1. Introduction

In the aftermath of the COVID-19 pandemic, there has been a growing use of and interest
in casual estimators that account for spillovers between units (Google Scholar 2024). These
estimators are not only applicable to problems in vaccine distribution but in general apply
to empirical research featuring interference between units. Example settings include those of
housing voucher allocation (Hudgens and Halloran 2008) and social experiments (Aronow and
Samii 2017).

When running such empirical research, it is of interest to know about the practical robustness
of the different estimators that account for spillovers. Researchers conventionally test the practical
performance with Monte Carlo studies. The credibility of these studies is limited because of
researcher discretion in choosing the design (Athey et al. 2019), and because these studies
are unlikely to be informative in real-world settings (Advani, Kitagawa, and Słoczyński 2018).
Therefore, making practical performance comparisons between different estimators accounting
for spillovers would be more powerful when the simulated data used is more realistic, and leaves
fewer degrees of freedom in the simulation stage.

Athey et al. (2019) use methods in generative artificial intelligence that can be used to generate
economic data that is more realistic than that from Monte Carlo simulations. In particular, the
authors investigate the performance of Wasserstein Generative Adversarial Networks (WGANs)
(Goodfellow et al. 2014; Arjovsky, Chintala, and Bottou 2017) in generating realistic economic
data. The training data in this analysis are the results of a program evaluation experiment.
In this setting, the Stable Unit Treatment Values (SUTVA) assumption is implied by the type
of estimators that Athey et al. compare to each other, probably motivated by test subjects
representing an insignificant part of the overall labor market (Lalonde 1986; Dehejia and Wahba
1999, 2002).
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In this paper, I simulate data with interference between units using methods in generative
artificial intelligence, and compare the performance of estimators that account for interference
between units. I choose to use diffusion models to simulate the data over GANs because diffusion
models (Ho, Jain, and Abbeel 2020) display superior generative capabilities over GAN models
(Yang et al. 2022), and because diffusion models do not feature the inherent instability of GAN
models during training and sampling (Cao et al. 2022). These issues would become more
pervasive as the size of interference-featuring network training data grows quadratically in the
number of units.

I train a diffusion model on social network data of an anti-conflict experiment within 56
schools, in which influential students are randomly assigned to be eligible to participate in an
anti-conflict training program (Paluck, Shepherd, and Aronow 2016). This setting is suitable for
this research because (i) we can expect spillovers between students in a school, (ii) treatment
is assigned at random within a well-defined group of students, meaning we can expect a
fitted diffusion model to give unbiased predictions of outcomes under counterfactual treatment
assignments using the same mechanism, (iii) there is variation in the proportion of students
treated within each contained unit (a school), which will allow the diffusion model to model the
relationship between treatment proportion intensity and spillover structures, and (iv) knowing
how the performance of estimators accounting for spillovers compares in the setting of school
experiments will be informative to empirical research in education, and may be relevant to
empirical research in other settings of social networks.

(Conjectured) I find that the relative performance of different estimators on the generated
data depends on the sample size, the demographic breakdown of counterfactual schools, and the
counterfactual assignment structure of treatment. I provide guidance on picking an estimator
that accounts for spillovers in three frequent empirical situations.

Sections 2-6, respectively, present 2 the mathematical background of diffusion models, 3 the
social network data, 4 an overview of the simulated data, 5 the comparison of estimators, and 6
the discussion including a comparison between WGAN models and diffusion models with a note
on the recovery of privacy-sensitive data.

2. Diffusion Models

2.1. Forward and Backward Processes

A diffusion model consists of two main components: the diffuser and the denoiser. The diffuser
progressively adds noise to the training data points. The denoiser learns to remove the noise
at each iteration to recover the original data points. After training a denoiser, one can draw a
vector of random noise and have the denoiser iteratively dust away some noise to eventually
recover an artificially generated data point that is reminiscent of the training data.

Denote a data point by x0, with x0 ∈ Rd . In our setting, x0 is a simple weighted undirected
network of units with unit characteristics. With that, d =

(n
2

)
+nm if there are n units, there are m

unit-level characteristic variables, and weights are a real number. In the empirical setting of this
paper, weighted edges will be friendship strengths between students, and characteristic variables
will be demographic variables such as gender and age.
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The diffuser iteratively adds noise to training data points according to the rule

xt =
√︁

1− 𝛽txt−1 +
√︁
𝛽t𝜺t , (1)

where 𝜺t is a standard Gaussian, 𝛽t is a fixed scalar with 𝛽t ∈ (0,1), and t ∈ {1, 2, . . . , T }. This
rule thus “diffuses” data as t grows. The rule from equation (1) defines the discrete time Markov
process with the transition density

q (xt |xt−1) =N
(
xt ;

√︁
1− 𝛽txt−1, 𝛽tI

)
, (2)

where I is the identity matrix. One can show that we can generalize to the transition density

q (xt |x0) =N
(
xt ;
√
�̄�tx0, (1− �̄�t ) I

)
, (3)

where 𝛼t = 1− 𝛽t and �̄�t =
∏t

𝜏=1𝛼𝜏. One can also show that

xt−1 =
1
√
𝛼t

(
xt −

1−𝛼t√
1− �̄�t

𝜖 t

)
+

√︄
(1−𝛼t ) (1− �̄�t−1)

1− �̄�t−1
z, (4)

where 𝜖 t =
∏t

𝜏=1 𝜺𝜏, and z is a standard Gaussian.

2.2. Algorithms

We can train our diffusion model by (i) selecting records from the training data at ran-
dom, (ii) adding noise to those data points according to randomly sampled data points from
Unif {1, 2, . . . , T } using equation (3), and (iii) training a neural network to predict 𝜖 t that
recovers x0, under predetermined 𝛼t for all t ∈ {1, 2, . . . , T }.

These steps can be more formally expressed in the following algorithm.

Algorithm 1 Training the diffusion model
1: repeat
2: x0 ∼ X ⊲ Draw a data point from the training set
3: t ∼ Uniform {1, 2, . . . , T } ⊲ Pick a perturbation progression level
4: 𝜖 ∼ N(0, I) ⊲ Pick an error term as to draw xt
5:

6: Take a step away from the loss’ gradient:
7: ∇𝜃 ∥𝜺 −𝜺𝜃

(√
�̄�tx0 +

√
1− �̄�t𝜺, t

)
∥ ⊲ Predict 𝜺 according to equation (3)

8: until converged

After training, we can generate artificial observations using equation (4) as expressed by the
following algorithm.
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Algorithm 2 Sampling from the diffusion model

1: xT ∼ N(0, I) ⊲ Draw a completely diffused “data point”
2: for t =T , T −1, . . . , 1 do ⊲ Progressively denoise the diffused data point
3: z ∼ N(0, I)
4: xt−1← 1√

𝛼t

(
xt − 1−𝛼t√

1−�̄�t

)
𝜺𝜃 +

√︃
(1−𝛼t ) (1−�̄�t−1)

1−�̄�t−1
z ⊲ Apply equation (4)

5: return x0

3. Data

The data I use in this study is from a randomized experiment of student-specific anti-conflict
training with 56 public middle schools is New Jersey (Paluck, Shepherd, and Aronow 2016).
In each of the 28 treated schools, a number of “influential” students are randomly selected to
participate in the experiments. The researchers have all students in the 56 schools fill out a survey
before and after the intervention. The surveys ask each student to list which other students they
interact with, and who their two best friends are. The surveys also collect demographic data.
With the resulting survey responses, one can construct a social network of the students in each
of the 56 schools.

4. Generating Student Network Data

With the data as described in section 3, I start with training a diffusion model on small random
samples of 20 students within school-grades. As (i) the relationship between any two students is
taken as symmetric, and (ii) I retain 3 demographic variables per student, this process involves
implementing a diffusion model following Algorithm 1 and 2 to generate data points with a
dimensionality of

(n
2

)
+nm =

(20
2

)
+20 ·3 = 2501. I will also generate network data for samples of

50 and 100 later. For now, the following acts as a proof of concept.

1I am using the equation here which I cover in the introduction.
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Figure 1: Example of Training Sample

Treated Not treated

Notes: This figure shows the relationships between and treatment of 20 students in a sample of the
training data. Vertices in this graph represent students. When there is an edge between two vertices in
this graph, then one of the associated students claimed they spent time with the other in the last few
weeks. When there is a double edge, then both students said the other is their best friend or without
loss of generality student 1 said student 2 is one of their best friends and student 2 said they spent time
with student 1 in the last few weeks. A student is treated when they were selected for a program to
encourage a dismissive public stance against conflict at school.
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Figure 2: Example of Generated Sample

Treated Not treated

Wore wristband without school treatment

Wore wristband with school treatment

Wore wristband in neither case

Notes: This figure shows the relationships between and treatment of students as part of a generated
sample. Vertices in this graph represent students. When there is an edge between two vertices in this
graph, then one of the associated students is predicted to have spent time with the other in the last
few weeks. When there is a double edge, then both students are predicted to have said the other is
their best friend or without loss of generality it is predicted that student 1 said student 2 is one of their
best friends and student 2 said they spent time with student 1 in the last few weeks. Treatment is the
selection into a program to encourage a dismissive public stance against conflict at school. Wearing a
wristband to communicate support to the anti-conflict program is an outcome variable shown in the
graph. “Without school treatment” refers to the predicted outcomes in the counterfactual in which no
students are treated. “With school treatment” refers to treatment of students in the sample as shown in
the graph.

5. Comparison Estimators Accounting for Interference

In this section, I will compare the empirical coverage of the true treatment effects under varying
treatment assignment schedules of these estimators applied to a diffusion model that is trained
like described in section 2.2. The estimators I pick are consistent with those in the analysis in
(Aronow and Samii 2017):
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1. The Thompson estimator

2. The Hajek estimator

3. Weighted Least Squares

4. Ordinary Least Squares

5. The difference in sample means (DSM) estimator

6. An exposure-based estimator

6. Discussion

In this section of this paper, I will discuss the benefits of evaluating estimators with artificial
data generated with DDPM or WGAN models, and its limitations.

I will also compare the generative performance of WGAN models and diffusion models. See
section A of the appendix for the current comparisons.
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A. Comparison Generative Ability LDW Data

A.1. Correlation Structures

Figure 3: Correlation Matrix Real Data
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Notes: This figure displays the correlations between different demographic variables in the LDW dataset.
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Figure 4: Correlation Matrices Simulated Data
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(a) DDPM model
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(b) WGAN model

Notes: This figure displays the correlations between the different demographic variables of artificially
simulated data. The simulated data comes from a Denoiser Diffusion Probabilistic Model (DDPM) and
a Wasserstein Generative Adversarial Network (WGAN). It appears that the DDPM does a better job at
mimicking the correlation structure of the original data than the WGAN model.

A.2. Marginal Distributions

In the below figures, I present the marginal distributions and (in one plot) the conditional
marginal distributions of the demographic variables in the Lalonde-Deheijia Wahba (LDW) data
set.
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